Υ	Q	Momentum and Impulse	
22	1	An object of mass 8 kg is at rest on a smooth horizontal surface. A constant horizontal force of magnitude 65 newtons is applied for 1.2 seconds.	
		(a) Calculate the speed of the object after this time.	2
		The object then hits a wall and rebounds in the opposite direction with no loss of energy.	
		(b) Calculate the magnitude of the impulse of the wall on the object.	2
19	1	A body of mass 4 kg is moving with initial velocity $(3\mathbf{i} + 2\mathbf{j}) \text{ms}^{-1}$. It is given an impulse of $(6\mathbf{i} + \mathbf{j}) \text{Ns}$.	
		Calculate the magnitude of the final velocity and the angle it makes with the x -axis.	4
18	17	A box of mass m kg is set in motion with an initial impulse I . As it moves along the surface it experiences a resistive force proportional to the square of its velocity v m s ⁻¹ .	
		By setting up a differential equation, show that the velocity of the box after m^I	
		t seconds can be expressed as $v = \frac{mI}{Ikt + m^2}$, where k is a constant and t is measured from the moment of impulse.	5
17	8	Two particles, X and Y, have masses of 0.2kg and 0.5kg respectively.	
		They are moving up a smooth plane AB, inclined at 30° to the horizontal as shown in the diagram.	
		В	
		X Y	
		A 30°	
		The particles collide 3.5 metres from B when X is moving with a speed of $6 \mathrm{ms^{-1}}$ and Y is moving with a speed of $3 \mathrm{ms^{-1}}$.	
		This collision causes X to come instantaneously to rest while Y continues to travel up the slope.	
		Show that in the subsequent motion, Y comes to rest before reaching B.	6
16	1	A bicycle and rider have a total mass of 70 kg. They are travelling at 12 m s ⁻¹ . The cyclist applies the brakes for 1.5 seconds, resulting in a total resistive force of 180 newtons.	
		What is the speed of the bicycle after 1.5 seconds?	3
16 Sp	1	A curling stone, P, of mass 18 kg is moving with velocity $\begin{pmatrix} 0 \\ -1 \cdot 1 \end{pmatrix}$ m s ⁻¹ relative to a	_
		suitable set of coordinate axes. It collides with a stationary curling stone, Q, of	
		mass 20 kg. Q then moves off with velocity $\begin{pmatrix} 0.36 \\ -0.72 \end{pmatrix}$ m s ⁻¹ .	
		Calculate the speed with which P travels immediately after impact.	3